

U. S. Nuclear Regulatory Commission
Public Workshop
Extended Power Uprates Lessons Learned
March 19, 2002

John May.	s.
1 Donald	. ``.
1	į
	F

Morning Agenda

№ 8:30 – 8:45	Opening Remarks
→ 8:45 – 9:30	NRC - Lessons Learned
→ 9:30 – 9:35	Break
> 9:35 − 10:20	GE/DAEC/Exelon – Lessons Learned
→ 10:20 – 10:25	Break
→ 10:25 – 11:10	Westinghouse/ANO-2 - Lessons Learned
≥ 11:10 + 11:15	Break
→ 11:15 – 12:00	Framatome - Lessons Learned

→ 3:00 – 3:15

Afternoon Agenda

➤ 1:00 – 3:00 Breakout Sessions

Break

→ 3:15 – 5:15 Presentations from Breakout Groups

Power Uprate Program

S. Singh Bajwa, Director Project Directorate III Division of Licensing Project Management Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission

Priority of Power Uprates

- ➤ High Priority
- > Among Most Significant Licensing Actions
- ➤ No Unnecessary Delays in Completing Reviews

Planning/Scheduling

- ▶6 Months for MUR Power Uprates
- ▶9 Months for Stretch Power Uprates
- ≥ 12 Months for Extended Power Uprates

MUR - Measurement Uncertainty Recapture

On-Line EPU Implementation License and implement power uprate without increase in maximum operating reactor dome pressure Permits initial power increase to existing BOP capacity immediately following receipt of OL amendment · Subsequent BOP mods to achieve full uprate Subsequent RFOs On-line EPU Implemented at River Bend, DAEC and Dresden 2

GE Power Uprate: Implementation

Factors involved in selecting power uprate program:

- · Potential BOP pinch points
 - License EPU at 120% original rated thermal power
 - EPU staged implementation based on plant mods schedule
- · On-line implementation:
 - License uprate without increase in reactor pressure
 - Permits initial power increase to existing BOP capacity immediately following receipt of OL amendment
 - Subsequent BOP mods to achieve target power uprate

GE Power Uprate Experience

Реггу River Bend

March 19, 2002

Initial PU upon SER independent of BOP mod schedule

March 19, 2002

GE Power Uprate: Implementation

Factors involved in selecting power uprate program (cont.):

- **Extended Power Uprate:**
 - Significant increase in revenues
 - Study finds optimum level, considering hardware mods
 - Phased implementation power level progressive with mods

Implementation PU → Target PU ≤ License PU

- Electrical Output Optimization Generator Limit
 - Design thermal power level to support maximum electrical output capability during peak summer conditions
 - Vary thermal power to support constant generation load

Target PU to support peak capable generation needs

March 19, 2002

Slide 10

Extended Power Uprate: 105% Power Uprate: EPU in Progress: Brunswick-1,2 (120%) KKM (114%) KKL (112%) WNP-2 Clinton (120%) Hatch-1,2 (113%) Browns Ferry-2,3 (120%) Monticello (112%) Peach Bottom - 2, 3 Fermi 2 Duane Arnold (120%) FitzPatrick Dresden -2,3 (117%) TPO in Progress: River Bend (101.7%) Quad Cities ~1,2 (117%) Brunswick - 1, 2 Grand Gulf (101.7%) NMP-2 Cofrentes (110%) Browns Ferry - 2, 3 Pilgrim (101.5%) Peach Bottom (101.7%) LaSalle - 1, 2 Laguna Verde

SUMMARY

- · Generation Capability More Important than Efficiency
- · EPU Generic Licensing Approach
 - Facilitates licensing and implementation phases
 - Increase plant uprate capability and flexibility
 - Continuous process improvement
- · Constant Pressure Power Uprate Approach
 - Less technical challenges
 - Reduced licensing effort

March 19, 2002

Slide 11

Slide 12

Current Status

- →72 Plant-Specific Applications Approved (22 in 2001)
 - ■13 Measurement Uncertainty Recapture Power Uprates (12 in 2001)
 - *51 Stretch Power Uprates (5 in 2001)
 - •8 Extended Power Uprates (5 in 2001)
 - •Approximately 9800 MWt (3300 MWt in 2001)
- ≥12 Plant-Specific Applications Under Review
 - •7 Measurement Uncertainty Recapture Power Uprates
 - ■1 Stretch Power Uprates
 - •4 Extended Power Uprates
- ▶2 Generic Topical Reports Under Review

13

Looking Ahead

Fiscal Year	Expected Applications	MUR	Stretch	Extended
2002	16	14	0	2
2003	14	5	0	9
2004	5	5	0	0
2005	6	2	2	2
2006	1	0	0	1

- → 8 More Power Uprates are Under Consideration
- Expect More Interest as a Result of Existing Potential & Ongoing Work
- ➤NRC Estimates Additional Submittals After FY 2003

4

Extended Power Uprates Lessons Learned

Mohammed A. Shuaibi, Project Manager Project Directorate III-1 Division of Licensing Project Management Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission

15

Communication

- >Communicate early and often
- >Get clear understanding of any RAIs/concerns and the reasons for the RAIs/concerns
- >Keep management informed of status

RAIs - Requests for Additional Information

16

Handling of RAIs

- ➤Get questions/concerns to licensee as soon as possible (e.g., e-mail)
- ➤ Hold teleconferences to ensure common understanding of the questions/concerns
- ➤ Prior to submitting responses to RAIs, check with the reviewers (e.g., teleconference) to ensure that the responses are adequate

7

Handling of RAIs (Continued)

- >Document RAIs and teleconferences in accordance with NRR Office guidance and procedures
- ➤ Make submittals available as soon as possible (e.g., e-mail) after being officially signed and dated

Exel n

Power Uprate Licensing **Process Improvements**

NRC Workshop March 19, 2002 Allan R. Haeger, Exelon Nuclear

Exel n.

Introduction

- · NRC has been responsive to power uprate submittals
- The process has improved with experience
- · Major areas for process improvement
 - Reduce RAI volume
 - Improve schedule predictability
 - Reduce discussions regarding proprietary designation

Exel n.

Process Improvements

- · Opportunity: Reduce review time by reducing the volume of RAIs
- Potential actions
 - Vendors/utilities review RAI patterns; expand standard submittal shells
 - NRC develop guidance for level of detail required
 - Utilities/vendors maximize dialogue prior to RAI response
 - NRC conduct on-site audits for large volume RAls

Exel n.

Process Improvements

- · Opportunity: Improve schedule predictability
- · Potential actions
 - Utilities discuss schedules with NRC in advance
 - Utilities limit concurrent major submittals
 - NRC promptly identify difficult areas
 - NRC and vendors work with ACRS to determine remaining areas of focus

Exel n.

Process Improvements

- · Opportunity: Reduce time spent discussing proprietary designations
- Potential actions
 - Utilities must challenge vendor designations
 - Vendors and NRC continue to meet to resolve remaining issues

Exel n.

Conclusion

- Experience is improving the process
- Approval of the constant pressure topical report will place focus on resolving RAI volume and proprietary issues

Duane Arnold Energy Center Extended Power Uprate

Implementation – Lessons Learned

Presented by Tony Browning Principal Licensing Engineer, NMC

Modifications – Lessons Learned

- Team Focused on PUSAR & NRC Submittal
- BOP System Evaluations treated as routine
 - Lack of Design Basis for BOP evaluations more difficult than Safety-related Systems

Modifications – Lessons Learned

Result – discovered last minute modifications

• Typically related to a "second order effect"

• Example – FW Heater tube vibration in drain cooler zone

Lesson Learned – *Get an early jump on BOP System evaluations*

Startup Testing – Lessons Learned

- Test Acceptance Criteria Original 1973 S/U Test Specifications
- Didn't fully incorporate plant operating experience (internal or external)
- Resulted in unexpected test "failures"

Startup Testing – Lessons Learned

- Examples
 - 1) FW flow controllers upgraded in 1996, – didn't have "classical" response assumed in S/U Test Specification
 - o 2) One criterion found to be "obsolete"
- Lesson Learned Validate basis for test criteria against current system/component requirements.

A BNFL Group company

Combined W/CE Fleet **Extended Power Uprate** Overview and Lessons Learned

Manager - Integrated Plant Engineering Services Westinghouse Electric Corp, LLC.

Presentation Overview

- · Overview of Fleet Experience
- EPU Technology and Process
- General Lessons Learned Assessment
- ANO-2 Program
- Questions

BNFL

WWestinghouse

Well Developed Fleet Experience

- Combined fleet has successfully achieved 56 uprates equivalent to 2450 MWe
- Recent Activity 9 plant Appendix K and 6 stretch uprates
- Work in Process/Licensing 7 plant Appendix K, and 5 stretch/EPU uprates
- EPU Activity

 - ANC-2
 Beaver Valley 1/2
 Point Beach 1/2
 Woterford 3
 Feasibility Assessment for 4 plants
- Fleet wide remaining potential

BNFL

EPU Technology for the Future

- Technology platforms for 10% to 20% power uprates
- Systematic review of NSSS fuel, safety analysis, components and systems
- Understanding of key design and licensing basis issues and margins is critical
- Developing new technology to further enhance margins
- Integrated programs and team work

BNFL

Westerphass

General Lessons Learned Assessment

- Overall communications enhanced
- Workshops and guidance document
- Active communication of expectations/responsiveness
- Communication between LAR and first set of RAIs
- Caples of RAIs promoting dialogue, understanding before formal submittal
- Review pedigree
- Selected considerations for program
- Experienced review of required elements and detailed work breakdown structure
- Develop regulatory communication plan
- Recognize depth of review and information required for submittal
- Use precedent recognizing that no two plants are alike

Items for Development/Discussion

- Questions regarding current methods and approach
- Internal communications on issues and prior approvals
- Reviewing ongoing/current issues not related to uprate
- Using past precedent and responding to past RAIs vs. additional **RAIs**
- Overall process is enhanced

BNFL

Westinghouse

Westinghouse Overview of ANO-2 Licensing

- PWR EPU licensing approaching mature process in terms of
- -Breadth of issues
- -Technical issues from NRC or ACRS review
- -Use of existing Licensing basis
- -Handling of Generic industry issues
- Extensive reviews with an appropriate level of detail
- -Experienced Reviewers
- -Familiar with approved methodologies
- -Communication and resolution of technical issues

NRC Workshop **Power Uprate**

ANO-2 Power Uprate Perspectives and Lessons Learned March 19, 2002 Bryan Daiber Roger Wilson

NRC Workshop **Power Uprate**

Roger Wilson

Presentation Agenda

- (1) ANO-2 Uprate Overview
- (2) Regulatory Process
- (3) ANO-2 Recommendations
 - Lessons Learned

ANO-2 Overview

- Uprate extended power uprate (EPU), >5%
 - 7.5% Primary: 2815 → 3026 MWt
 - Follows steam generator replacements by 1 cycle
 - 11% Secondary: 958 → 1065 MWe (+107)
 - Replaced high pressure turbine steam path
 - Replaced 4 low pressure turbine stages
 - Isentropic efficiency increase due to advance design

ANO-2 Overview

2

- Key design issue
 - T_{HOT} increase versus PWSCC
 - Alloy 600 RV head penetrations
 - Limits uprate amount
 - "Short term" issue
 - » Will be resolved in near future
 - » Controlled long-term decisions for uprate
- ANO-2 templates used
 - -Farley and other BWR submittals
 - -Westinghouse topical
 - -GE BWR topical

· Regulatory Process

- Schedule
 - Submittal 12/19/00
 - RAI response history
 - 15 at end of 9/01
 - -Multiple questions in each RAI
 - ACRS review of D. Arnold 9/27/01
 - 27 starting 10/01 (into 3/02)
 - Draft SER issued 1/18/02
 - ACRS subcommittee 2/13/02
 - ACRS full committee 3/7/02
 - License amendment about 4/19/02 Entergy

Regulatory Process

- · ANO-2 initial submittal
 - Level of detail consistent with FSAR
 - Assumed current licensing basis is maintained
 - · Current licensing basis maintained with a few exceptions

7

- Control room habitability

NRC Workshop Power Uprate

Bryan Daiber

Regulatory Process

- · Analysis methods
 - Used approved methods
 - NRR and ACRS questioned underlying assumptions and applicability to an EPU of some of the approved methods
 - Should be resolved earner for future licensees

Regulatory Process

- ACRS directs NRR to probe deeply in key areas
 - NRR performed several confirmatory analyses

 - Containment (LOCA/MSLB)
 PTS reference temperature calculations
 - · RV head crack susceptibility
 - Dose calculations for LOCA, SGTR, FHA and **CEA Ejection**
 - Atmospheric dispersion X/Q calculations
 - Power uprate PSA assessment
 Identify areas earlier to allow licen

Regulatory Process

- . NRR probed key areas (continued)
 - Most reviewers familiar with ANO-2 FSAR
 - · Verbal interfaces productive
 - Minimized RAIs
 - Reviews were very extensive
 - Many questions were standard
 - Reviewer looking for specific information

Regulatory Process

- Non-uprate issues
 - NRR included issues not part of uprate
 - · Control room habitability
 - ECCS long term core cooling assumptions
 - · Exclusion area boundary dispersion factors
 - · SG level uncertainties
 - Resolving non-uprate issues was biggest challenge of approval process
 - Preclude these issues; if not, identify known issues earlier

12

Regulatory Process

- · Probabilistic safety assessment (PSA)
 - Large workload item for licensee
 - NRR and ACRS seem at odds over value added by power uprate updates
 - Better guidelines need to be developed

13

Regulatory Process

- · Guidelines Needed for PWR Uprates
 - Developed by NRR or industry
 - · Additional guidance
 - Reaffirm approved methods
 - Transient testing
 - Environmental impact assessment
 - PSA updates
 - Preclude; else identify non-uprate issues earlier
 - Identify confirmatory analyses earlier
 - Specific questions; generic questions
 - Include in submittal content
 - FAC, EQ, MOV program, fire protection program,

14

- human factors
- ATWS

ANO Recommendations

- Need full 18 months for EPUs
- · Submittals should include:
 - Topics in ANO-2 initial submittal, plus:
 - · With NRR guidance
 - Detailed environmental impact (12/10/01 RAI)
 - Operation impacts
 - Testing
 - Include more detail in submittal content
 - FAC
 - EQ, MOV program, fire protection, human factors

15

- ATWS

ANO-2 Overview

16

Additional Topics

ANO-2 Overview

- •Uprate economics favorable
 - -- ≈ \$35-40M -> 107 MWe
 - If accomplished 10 times
 - \$350- 400M \rightarrow 1070 MWe
 - Reduces station operating costs
 - Without staff (payroll) reductions
 - Favorable to company, site and community

ANO-2 Overview

- Design, Licensing Basis & Config. Control
 - Improved
 - Recent reviews
 - Revised analyses

 - Modifications
 Many examples

Simplified EPU Work Breakdown Structure > Determination of Operating Conditions > Fuel Analysis > Core Mechanical Analysis > UrSAR Accident Evaluation > Post-Accident Containment Evaluation > Evaluate NSSS Structural > Evaluate NSSS Structural > Evaluation of NSSS Components > Review of Attached Piping > Review and Update Licensing Documents > Plant Setpoint Review > Evaluation of Plant Systems > Procedure Reviews > Plant Programs

